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Abstract. The ground-state properties of Zn isotopes have been investigated using the deformed relativistic
mean-field (RMF) theory with the NL-SH and TM1 forces. The π-meson and the spatial component of the
ω-meson are taken into account. Shell effects in nuclear sizes and neutron skins are well described. Strong
deformations are found for most of Zn isotopes. The shape coexistence of prolate-oblate types exists for a
high portion of Zn isotopes. The occurrence of the superdeformed minimum in even isotopes is discussed.
The π-meson contribution in ground-state properties of odd Zn isotopes is very limited, whereas the spatial
component of the ω-meson that couples to the nonzero vector current in deformed odd nuclei gives rise to
the degeneracy breaking of the level with opposite spin projections, playing the role of anti-pairing. The
anti-pairing role in odd nuclei and pairing correlations with the Bardeen-Cooper-Schrieffer description in
even nuclei are important to give the odd-even difference in charge radii, the prediction of the proton drip
line, and possible abundance of the halo structure for neutron-rich isotopes.

PACS. 21.10.Dr Binding energies and masses – 21.60.-n Nuclear-structure models and methods – 27.50.+e
59 ≤ A ≤ 89

1 Introduction

Radioactive beams are being used increasingly to produce
nuclei far from stability. The experimental data for iso-
topes of both sides of β-stability are accessible for light
nuclei (Z < 10) at present, and facilities will be improved
for the access to the heavier nuclei in the future. Exotic
nuclear structures may emerge possibly at excitation ener-
gies and high isospins. These exotic structures such as the
nucleon halos or skins can bring about important effects
in cross-sections of nuclear reactions and nucleosynthe-
sis. The understanding of the properties of these nuclei is
helpful for both nucleosynthesis in astrophysical processes
and synthesis of heavy elements. In order to understand
exotic nuclear structures at some extreme conditions, it is
theoretically of prime importance to investigate isospin-
dependent ground-state properties of isotopic chains.

There are quite a few successful descriptions for iso-
topes at and beyond the valley of stability such as the mass
model, nonrelativistic mean-field approach with the vari-
ous Skyrme-type forces, and relativistic mean-field (RMF)
theory. The RMF theory [1–14] seems more powerful since
it can dynamically give rise to the spin-orbit interaction
associated with shell effects. In the RMF theory the sat-
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uration of the nuclear interaction is obtained by a bal-
ance between a large attractive potential provided by the
scalar σ-meson and a large repulsive potential by the vec-
tor ω-meson. The density dependence of the nuclear in-
teraction is appropriately complemented by the nonlinear
self-interaction term of σ and ω mesons. The asymmet-
ric energy and isospin dependence in RMF are described
through the inclusion of the ρ-meson. The nuclear inter-
action in RMF is reproduced by the one-meson–exchange
summations of various mesons between nucleons.

The RMF models are able to describe the ground-state
properties of the isotopic chain from the neutron drip line
to proton drip line quite well. In the past, Sharma et al.

studied the Pb isotopes [15]. The ground-state proper-
ties of Kr, Sr, Zr isotopes [16], and quite a few light iso-
topes in the region Z = 10–22 [17] were studied in detail
by Lalazissis et al. For isotopes of the rare-earth region,
Lalazissis et al. [18] studied nuclear isotopic shifts and
deformation properties systematically. The RMF theory
was also applied to the study of the carbon isotopic chain
which is abundant for exotic structures by Ren et al. [19]
and Sharma et al. [20]. Most recently, Li et al. [21] have
investigated the ground-state and pairing properties of Pr
isotopic chain in RMF. In the near past, the superde-
formed (SD) bands were discovered in the mass region
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A ∼ 60 (Zn isotopes) (see [22–25] and reference therein)
which is one of the lightest mass regions where the su-
perdeformation has been observed at high-spin states. SD
properties in Zn isotopic chain are shown to be isospin
sensitive [26,27]. It is significant to investigate the ground-
state properties of Zn isotopes first of all. We will investi-
gate ground-state properties of Zn isotopic chain in RMF.
As the superdeformation in odd Zn isotopes was investi-
gated in ref. [28], we will discuss simply the occurrence of
superdeformations in some even Zn isotopes.

In general, the RMF framework does not include the
spatial component of the ω-meson and the π-meson, since
they vanish in spin-saturated nuclei. However, in odd nu-
clei where the spin of the valence nucleon is not paired, the
expectation value of the π-meson does not vanish [29–31],
and in deformed odd nuclei the spatial component of the
ω-meson turns out to be nonzero [29–33]. We will take into
account the π-meson and the spatial component of the ω-
meson in deformed RMF [10]. As usual, the π-meson ex-
change is directly introduced as an effective interaction.
In the effective Lagrangian, the pseudo-vector (PV) cou-
pling of the π-meson is preferred, since the pseudo-scalar
coupling gives rise to the abnormally large self-energies of
nucleons and s-wave scattering length of π-meson-nucleon
scattering [14].

We will analyze the ground-state properties of Zn iso-
topic chain such as binding energies, charge and matter
root-mean-square (r.m.s.) radii, and deformations for even
and odd nuclei. The role of pairing correlations with the
Bardeen-Cooper-Schrieffer (BCS) treatment will be also
investigated. In sect. 2, we give the RMF formalism briefly.
Numerical results and discussions are presented in sect. 3,
and the occurrence of SD minima will be simply touched.
The summaries are given in sect. 4. In the appendix, the
source terms of the π-meson and the spatial component of
the vector meson are given in the axially deformed frame-
work.

2 Formalism

A brief RMF description for finite nuclei is given in this
section. The effective Lagrangian is given as

L = ψ

[
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where ψ, σ, ω, b0 and π are the fields of the nucleon,
scalar, vector, neutral isovector-vector, and pseudo-scalar
mesons, with their masses MN ,mσ,mω,mρ, and mπ, re-
spectively. Aµ and Aµν are, respectively, the field of the

photon and its field strength tensor. gi (i = σ, ω, ρ) and
fπ are the corresponding meson-nucleon couplings. τ and
τ3 are the isospin Pauli matrix and its third component.
Fµν , Bµν and Aµν are the strength tensors of ω, ρ mesons,
and photon, respectively:

Fµν = ∂µων − ∂νωµ , Bµν = ∂µb0ν − ∂νb0µ ,
Aµν = ∂µAν − ∂νAµ . (2)

The self-interacting potential of σ and ω mesons read,
respectively,

U(σ) =
1

3
g2σ

3 +
1

4
g3σ

4, U(ω) =
1

4
c3(ωµω

µ)2 , (3)

In RMF, only the third components of isovector mesons
ρ and π, i.e. b0 and π0, survive due to the charge con-
servation. Though the PV coupling of the π-meson is not
renormalizable, we remind ourselves here that we work on
the effective interactions. The pseudo-vector coupling fπ
is taken as the experimental value 0.9708.

Using the Euler-Lagrangian equation, the Dirac equa-
tion of motion is given as

(

iγµ∂
µ −MN + gσσ − gωγµωµ − gργµτ3bµ0

− fπ
mπ

γ5γµτ3 · ∂µπ0 − e
1

2
(1 + τ3)γµA

µ
)

ψi = 0 . (4)

The mesons and photon obey the following equations:
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where A is the nucleon number of the system.
In the RMF approximation, the Dirac equation can be

written explicitly as
(

− iα · ∇ +βM∗
N + gωω

0(r)− gωα · ωv(r) + gρτ3b
0
0(r)

−gρτ3α · b0(r) +
fπ
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1

2
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)

ψi(r) = 0 (10)

with M∗
N = MN − gσσ(r). Here the spatial vector of

the electro-magnetic field is neglected since it is much
smaller than the counterpart of the vector meson in the
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strong-interaction system. For mesons and photon, equa-
tions are given as
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For the spatial part of vector mesons, there is only the
angular part
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2
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where ρs, ρB , ρ3 and ρp are different densities, and j’s
are vector currents. In the spherical or spin-saturated de-
formed nuclei, the spatial parts of vector mesons vanish.
Since the spatial component of the ρ-meson is small with
comparison to that of the ω-meson, we will neglect it in
the actual calculation. To see how the π-meson and the
spatial component of the vector meson have nonzero con-
tributions, we will give in the appendix their source terms
explicitly in the axially symmetric framework for odd nu-
clei and show how they vanish for even nuclei.

The total binding energy is defined as

EB = A×MN − E , (18)

where E is the total system energy:
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with α the collection of good quantum numbers, and

Eπ = − fπ
2mπ

∫

d3rπ0(r)∇ · (ψ†(r)Στ3ψ(r)) . (20)

The pairing correlation will be taken into account for
even nuclei in calculations using the BCS theory. The de-
tails of the treatment may be found in ref. [10]. We use
constant pairing gaps which are obtained using the pre-
scription of Möller and Nix [34]

∆n =
4.8

N1/3
, ∆p =

4.8

Z1/3
(21)

with N and Z the neutron and proton number, respec-
tively. In deformed odd nuclei, there exists a nonzero vec-
tor current which results in the breaking of the time-
reversal symmetry and the spin ±Ωi degeneracy is there-
fore broken. Calculations for odd-Z Pr isotopes [21] even
without including the vector current show that the pair-
ing correlation has very limited contributions in isotopes
within drip lines. Considering these factors, we omit the
pairing correlation treatment in odd Zn isotopes.

3 Results and discussions

The RMF equations are solved in the axially deformed
framework. In the deformed system, we refer to treat-
ments of [10], namely solve the Dirac equations together
with meson equations by the expansion in the harmonic-
oscillator basis. The Dirac and meson equations are ex-
panded separately in the harmonic-oscillator basis with
the respective oscillator quantum number NF and NB .
The numerical calculations follow ref. [10] and here we
take NF = NB = 12.

We use the RMF parameter sets NL-SH [12] and
TM1 [13] to perform calculations. The parameter set NL-
SH is as follows: MN = 939.0MeV, mσ = 526.059MeV,
mω = 783.0MeV, mρ = 763.0MeV, gσ = 10.4436, gω =
12.9451, gρ = 4.3828, g2 = −6.9099 fm−1, g3 = −15.8337.
TM1 parameters are the following: MN = 938.0MeV,
mσ = 511.198MeV, mω = 783.0MeV, mρ = 770.0MeV,
gσ = 10.0289, gω = 12.6139, gρ = 4.6139, g2 =
27.2325 fm−1, g3 = 0.6183, and c3 = 71.5075. The NL-SH
and TM1 sets are good choices to describe the isotopic
chains from the neutron drip line to the proton drip line.

In the following, we will investigate the binding en-
ergies, nuclear sizes (radii), isotope shift, quadrupole de-
formations, shape coexistence, SD minima in even nuclei,
and positions of drip line nuclei, together with the role
of pairing correlations in BCS for the Zn isotopic chain.
The contributions of the π-meson and spatial component
of the ω-meson will be also discussed at last.

3.1 Binding energies

Binding energies of Zn isotopic chain in the deformed
RMF calculations with NL-SH and TM1 parameter sets
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Table 1. The binding energies EB (in MeV) of Zn isotopes obtained for the lowest-energy state with the forces NL-SH and
TM1. The empirical values (Expt.) available are also shown for comparison. The labels I and II stand for the first (prolate) and
second (oblate) minima of the ground state, respectively.

NL-SH TM1 NL-SH TM1

A I II I II Expt. A I II I II Expt.

52 380.11 380.06 380.70 380.84 76 652.58 651.02 652.17 650.37 651.99
53 398.09 397.32 77 657.82 656.61 656.63
54 417.28 416.22 417.79 416.08 418.95 78 664.43 663.83 662.64 661.75 663.31
55 434.67 434.37 435.38 79 668.99 667.67 666.15 665.37 668.10
56 452.55 451.62 451.86 450.43 454.25 80 675.82 672.19 674.01
57 467.91 466.27 469.28 81 676.18 675.89 673.05 672.75 676.43
58 485.65 482.93 486.96 82 680.93 680.88 677.74 677.70 680.44
59 497.12 496.70 500.00 83 681.90 679.52
60 511.32 509.67 510.67 509.14 514.99 84 685.76 684.29 683.75 682.43
61 522.70 521.69 525.22 85 686.46 684.24 684.70 682.65
62 534.25 532.79 534.56 533.47 538.12 86 690.06 688.68 688.73 687.75
63 543.91 542.38 543.92 543.66 547.23 87 690.63 689.54 689.49 688.72
64 554.74 554.32 555.90 555.99 559.09 88 693.50 693.15 692.71 692.70
65 562.29 561.87 564.05 563.96 567.07 89 692.58 692.46 692.55 692.30
66 573.05 573.32 574.99 575.50 578.13 90 696.11 696.57 695.85 696.36
67 580.18 580.00 582.64 582.71 585.19 91 695.55 695.81 695.09 694.64
68 590.94 591.36 593.61 593.98 595.38 92 698.62 699.24 698.71 699.35
69 597.52 598.07 599.85 600.42 601.87 94 700.90 701.85 701.18 702.22
70 608.10 611.14 611.08 96 703.20 703.93 703.79 704.50
71 613.66 614.10 616.36 615.79 616.92 98 706.09 706.09 706.97 706.97
72 623.04 625.19 625.79 100 708.88 708.88 709.87 709.86
73 629.21 628.59 630.71 629.60 631.15 102 709.02 709.02 709.35 709.35
74 638.65 637.50 639.25 638.10 639.52 104 708.74 708.20 707.78 707.40
75 644.53 642.96 645.55 644.35

are given in table 1. The theoretical values are the lowest
energies of ground states. As Zn isotopes are considered
to be deformed, the RMF minimization is performed both
for a prolate and an oblate shape. The binding energies
for the first minimum (I) and the second minimum (II)
(if existent) correspond to the prolate and oblate shapes,
respectively. Available experimental values from the mass
compilation of Audi and Wapstra [35] are also listed for
comparison. The binding energies with both the NL-SH
and TM1 sets are in good agreement with the experimen-
tal values available. The good agreement with experimen-
tal data for the odd isotopic binding energies indicates
that our treatment for odd isotopes is reasonable.

3.2 Nuclear radii and isotope shift

The nuclear size in quantum many-body systems is an
important phenomenological number. For nuclei of β-
stability, it is well known that the nuclear size is propor-
tional to A1/3. However, in the isotopic chain from the
proton drip line to the neutron drip line there exists a so-
called isotope shift [15,16,18] which makes the nuclear size
deviate from the A1/3 relation. The RMF theory was for
the first time able to describe the isotope shift [15,18,21].
Though the experimental data about charge r.m.s. radii
and isotope shifts are scarce, the prediction of the isotope
shift is still helpful to understand the isospin dependence
of nuclear sizes and shell effects.

3.6

3.8

4

4.2

4.4

NL-SH

r c (
fm

)

TM1

3.5

4

4.5

5

40 60 80 100

A

r
m

 (
fm

)

40 60 80 100

Fig. 1. The charge and matter r.m.s. radii of Zn isotopes: rc

and rm. The empty circle is for odd isotopes and the solid
one is for even isotopes. The left panel is calculated with the
NL-SH and the right one is with the TM1.

Charge and matter radii of Zn isotopes are shown in
fig. 1. The NL-SH and TM1 forces reproduce similar re-
sults. There is a minimum in the isotope shift curves. For
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Fig. 2. The same as shown in fig. 1 but for the neutron r.m.s.
radii.

neutron-deficient nuclei, the isotope radius rises abnor-
mally with the decrease of neutron number, which also
exists for many other isotopic chains. Two kinks are found
at the neutron magic number N = 28 and 50, as shown
clearly in fig. 1. The appearance of the kink may be re-
lated to the nuclear deformation and shell effect. The de-
formation contributes partly to the increase of the nuclear
size [15,18]. The semi-magic nuclei have a strong shell ef-
fect and a smaller deformation than the neighboring nu-
clei, leading to the existence of the kink. In the nonrela-
tivistic approach of Skyrme, it is difficult to explain the
kink unless the isospin-dependent spin-orbit interaction is
carefully modified [36]. The success of the description for
the isotope shift and kink in the RMF theory is attributed
to the isospin-dependent spin-orbit potential determined
dynamically by the Dirac structure of spinors.

Different from the charge and matter radii, the neu-
tron r.m.s. radii, as shown in fig. 2, increase monotonously
with the rise of neutron number. Compared to the neutron
radii, we can see that the parabola of the charge radii in
fig. 1 on the proton-rich side comes mainly from the pro-
ton distribution. The proton skin appears in proton-rich
isotopes. The neutron (proton) skin thickness (rn − rp) is
illustrated in fig. 3, which shows that there are thick pro-
ton skins on the proton-rich side. On the proton-rich side,
the proton r.m.s. radii increase rapidly and the curve has a
large slope due to the Coulomb repulsion. In figs. 2, 3, we
also find the kinks at the neutron magic number N = 28
and 50. As isotopes walk across the kink at N = 50 to
the neutron-rich side, the neutron distribution undergoes
a strong increase of spatial extension, which may give rise
to possible halos in highly neutron-rich nuclei. We also
observe a strong rise of spatial proton extension as the
neutron number falls down from N = 28.

Since the harmonic-oscillation wave functions at large
distances vanish in a Gaussian way, we briefly discuss the
results of the Zn isotopes near drip lines that have an ex-
ponentially vanishing tail. It is known that a better way
to investigate the properties of nuclei near drip lines is the
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40 60 80 100

NL-SH

A

r n
-r

p
 (

fm
)

40 60 80 100

TM1

Fig. 3. The neutron skin thickness (rn − rp) of Zn isotopes
from the proton-rich side to the neutron-rich side.

Hartree-Fock-Bogoliubov method in coordinate space [37].
For the present RMF framework, both a deformed rela-
tivistic Hartree-Fock-Bogoliubov code in coordinate space
and a deformed relativistic Hartree-Bogoliubov code in
coordinate space have not been worked out for all the
groups. Current deformed RMF calculations are carried
out in harmonic bases. For the neutron-rich exotic nu-
clei studied in this work, the 3s state is bound and the
unbound states near the Fermi surface have large angular
momenta. This means that the large centrifugal potentials
may limit the asymptotic behavior of the wave function
and the radii of neutrons obtained with a large basis are
approximately reasonable if the probability of neutron oc-
cupation on unbound levels is small. However, after a sud-
den rise of unbound-particle number occurs at drip lines,
we would say that the radii of a few drip line nuclei from
the calculation are not accurate. For the proton-rich ex-
otic nuclei, besides the centrifugal barrier, there is a high
Coulomb barrier that may provide a more favorable limit
to the asymptotic behavior for protons near the Fermi sur-
face. On the other hand, the total energy is not sensitive
to the unbound levels and is still reliable for the exotic nu-
clei close to the drip lines. This large basis has also been
checked in other studies such as refs. [19,21,38]. Of course,
it is better to use codes such as the deformed relativistic
Hartree-Bogoliubov one in coordinate space for drip line
nuclei and the code is yet to be done.

3.3 BCS pairing correlations and drip line nuclei

Pairing correlations are important to explain the odd-
even difference of nuclei. Usually pairing correlations are
small compared to the mean field and taken into account
through the perturbative treatment like the BCS theory.
We may here explain the odd-even difference observed in
charge radii with the BCS pairing correlations.

Note that we have plotted radii of even and odd Zn iso-
topes separately. Except for the highly proton-rich side,
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Fig. 4. The occupation number N> of even Zn isotopes. The
open circle stands for the N> of the proton, the open triangle
is for that of the neutron, and the solid circle is for that of the
sum of neutron and proton.

the curves for the neutron distribution of odd and even
nuclei in figs. 2, 3 almost overlap. The pairing correlation
is considered to cause the odd-even difference in charge
and matter distributions. The two curves in fig. 1 over-
lap at the neutron number N = 50, where the pairing
contribution in even nuclei reduces to the minimum due
to the large energy gap at N = 50. For highly proton-
rich even nuclei, a considerable rate of proton pairs can
be boosted to continuum states due to the pairing corre-
lations together with the Coulomb repulsion. We plot the
occupation number N> of positive-energy states in fig. 4.
The N> of the proton goes up sharply from N = 28 on
the highly proton-rich side. This corresponds to the gen-
eral trend of the odd-even difference of the charge radii
shown in fig. 1. On the neutron-rich side, N> of the neu-
tron begins to increase from N = 52 just after the magic
number 50. For highly neutron-rich nuclei, N> of the neu-
tron undergoes another sharp rise from N = 70 which is
very close to the neutron drip line. As the neutron num-
ber increases, the proton becomes more deeply bound and
hence the pairing contribution of the proton reduces, as
seen in fig. 4. The odd-even difference of the charge radii
decreases as the neutron number rises.

The odd-even difference for the r.m.s. radii should be
generally small. Calculations with a spherical RMF code
can verify this and show that the odd-even difference for
the neutron radii seems larger than that for the proton
ones in even-Z isotopes. However, nearly all odd Zn iso-
topes show large deformations that give rise to the nonzero
spatial component of the ω-meson which breaks down the
pairs, and that will be discussed in the last subsection
and in the appendix. Although the spatial component of
the ω-meson is dominated by the unpaired neutron in
Zn isotopes, the proton pairs are similarly broken down
since the ω-meson is an isoscalar. The Coulomb repulsion
pushes out the proton pairs occupying various levels to
much more extended distributions in even Zn isotopes on

the proton-rich side, and the odd-even difference in the
charge radii becomes prominent as nucleon pairs in odd
Zn isotopes are broken down. It can still play a pronounced
role in pushing out the pairs on the neutron-rich side since
the neighboring levels above Z = 28 are dense, and that
gives rise to a somehow explicit odd-even difference for
the charge radii. As mentioned in the beginning of this
section, even without considering the vector current, the
pairing contribution in odd (deformed) nuclei is very small
within drip lines as shown in Pr isotopes [21]. The odd-
even difference of the charge radii shown in fig. 1 is reliable
for isotopes within drip lines.

It is pointed out in ref. [37] that the BCS treatment
will encounter problems associated with nucleon emissions
near drip lines where the state density near the Fermi sur-
face is becoming quite dense. The state distribution near
the Fermi surface is so dense that the constant pairing gap
in the BCS treatment will give rise to the nucleon gas in
drip line nuclei. Li et al. [21] found that sudden rises of the
occupation number N> occurred beyond drip lines. The
perturbative treatment of pairing correlations is no more
valid beyond drip lines, since the BCS correction becomes
comparable to the mean field. A correct and detailed treat-
ment of pairing correlations is required for drip line nuclei.
However, it is beyond the treatment of the present work. It
is worthy to notice that the sudden rise of the occupation
number N> is actually a nontrivial signal for the arrival
of drip line positions. We can find from fig. 4 that 102Zn
is the nucleus where the N> begins to increase largely.
102Zn may be roughly regarded as the neutron drip line
nucleus, which is consistent with the determination from
the binding energies. For the proton drip line, it is a little
complicated due to the Coulomb repulsion. As similarly
judged from fig. 4, the proton drip line would be close to
N = 28. As shown in fig. 4, the N> at or beyond the drip
lines seems model dependent, and that may be related to
the invalidity of the BCS treatment, as discussed above.

The proton and neutron drip line nuclei are determined
by the single- and two-nucleon separation energies (sn and
s2n). There is also the odd-even difference of the drip line
nuclei. The single-neutron separation energy for odd nuclei
becomes negative at N = 59, as can be obtained from the
values in table 1. 87Zn is the neutron drip line nucleus for
odd Zn isotopes. For even isotopes, the drip line is much
far off the neutron number N = 57. As reported by Li et

al. [21], the nucleon occupation number at positive states
rises dramatically from zero for odd-Z Pr isotopes across
the drip lines, which shows that the perturbative treat-
ment of BCS pairing is invalid and a dynamical treatment
is required. Though the appropriate consideration of pair-
ing correlations may be important for the drip line nuclei,
the position of the neutron drip line for odd isotopes will
not change much without considering the pairing correla-
tions. According to the values given in table 1, the even
drip line nucleus is 102Zn. For even isotopes with N > 57,
we can see clearly that there is the relation s2n < sn. This
is an implication that even Zn isotopes for N > 57 are
rich possibly in halos. As shown in fig. 4, the N> near
A = 88 reaches a local maximum, which corresponds to a
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Fig. 5. Single- and two-proton separation energies sp and s2p.
The solid and empty circles are calculated from the NL-SH and
TM1 sets, respectively. The determined even and odd drip line
nuclei are 56Zn and 55Zn, respectively.

maximum coupling of pairs with the continuum states. It
indicates that the appearance of halos may be related to
the varying tendency of the odd-even difference.

We go on to obtain the proton drip line of Zn isotopes
from the single- and two-proton separation energies (sp
and s2p). Similar to the derivation of the neutron drip line,
the sp for odd nuclei and s2p for even nuclei are calculated.
The results are shown in fig. 5. For highly proton-rich even
nuclei, the proton occupation number at positive-energy
states is so high that the two-proton separation may be
much easier. The s2p approaches zero for 56Zn. For odd
nuclei, the sp for 55Zn approaches zero. The experimental
proton drip line nucleus is 55Zn [35]. Besides the pairing
correlation, the good agreement here may be attributed to
the role of the vector current, as will be mentioned later.

3.4 Quadrupole deformations and shape coexistence

Quadrupole deformation parameters (β2) of Zn isotopes
are given in table 2. Except for a few spin-saturated nu-
clei, all nuclei in this isotopic chain are deformed with
the prolate or oblate shape. The spherical isotopes have
neutron numbers N = 28, 40, 42, 50, 52 and 70, where
N = 28, 50 are the magic ones, and N = 70 is neigh-
boring the position of the neutron drip line. In ref. [17],
Lalazissis et al. found that the shell closure N = 28 for
some light isotopic chains, such as Mg, Si, S, Ar, Ti and
Cr, is very weak and the shell effects due to N = 28 are
quenched. However, this does not happen for Zn isotopes.
In the Zn isotopic chain, the shell effects associated with
the magic numbers are prominent and the shapes at magic
numbers are spherical. Both NL-SH and TM1 forces de-
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Fig. 6. Shape coexistence of prolate and oblate deformations.
The upper panel draws the β2 of prolate and oblate deforma-
tions at each side of the solid line. The lower panel plots the
energy difference Ed between the prolate and oblate deformed
isotope.

scribe well the shell effects and magic closure. Very close
agreement of the shape prediction by NL-SH and TM1
forces is shown in table 2.

Usually, quadrupole-deformed nuclei have a prolate or
an oblate shape. The Routhian may have many minima
which correspond to different deformations, and that allow
the shape coexistence of prolate and oblate types but just
with a small difference of binding energies for the same
nuclei. The Zn isotopic chain is abundant in phenomena of
shape coexistence. The dense region for shape coexistence
exists for nuclei whose neutrons occupy up to the states
just above one magic number but much lower than another
magic number. For regions N = 60–69 and N = 84–96
most of the nuclei have shape coexistence. The energy
difference (Ed) of prolate and oblate minima of the shape-
coexisting nuclei may be obtained from table 1. In order to
show that clearly, we depict the deformations of prolate-
oblate shape coexistence together with Ed in fig. 6. There
are 65% points in the lower panel falling in the interval
|Ed| < 1MeV. Usually, the magnitude of Ed for the shape
coexistence is about a few hundred keV. In fig. 6, the Ed

of 85Zn is ∼ 2.2MeV. The reason to add this point is that
the prolate and oblate minima have the same ground-state
configuration.

It is interesting to see that there is a difference of pro-
ton and neutron deformations which corresponds to the
different deformed mean fields of neutron and proton. The
proton and neutron deformations are shown in fig. 7. The
difference of proton and neutron deformations goes to the
minimum at the neutron magic number N = 20, 28 and
50, showing a prominent shell effect. A large difference
emerges in the regions near drip lines with N < 28 and
N > 50. Thus, the difference is mainly from the large
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Table 2. The quadrupole deformation parameter β2 of Zn isotopes. The labels I and II are the same as in table 1.

NL-SH TM1 NL-SH TM1

A I II I II A I II I II

52 0.011 −0.032 0.053 −0.041 75 0.184 −0.119 0.195
53 0.233 0.247 76 0.148 −0.076 0.172 −0.071
54 0.185 −0.079 0.217 −0.080 77 0.174 0.185
55 0.244 0.258 78 0.092 −0.043 0.140 −0.047
56 0.169 −0.045 0.222 −0.100 79 0.118 −0.086 0.128 −0.094
57 0.179 0.193 80 0.004 0.006
58 0.007 0.016 81 0.130 −0.093 0.140 −0.117
59 0.179 0.189 82 0.007 −0.028 0.014 −0.045
60 0.152 −0.095 0.207 −0.133 83 0.193 0.205
61 0.220 0.231 84 0.179 −0.095 0.199 −0.153
62 0.195 −0.154 0.220 −0.197 85 0.228 −0.194 0.240 −0.219
63 0.226 −0.202 0.234 −0.221 86 0.218 −0.168 0.235 −0.210
64 0.213 −0.184 0.219 −0.207 87 0.228 −0.227 0.242 −0.251
65 0.195 −0.186 0.200 −0.200 88 0.233 −0.207 0.241 −0.226
66 0.168 −0.160 0.140 −0.166 89 0.233 −0.229 0.242 −0.251
67 0.129 −0.140 0.132 −0.149 90 0.228 −0.215 0.229 −0.224
68 0.046 −0.103 0.037 −0.097 91 0.213 −0.212 0.227 −0.227
69 0.077 −0.159 0.078 −0.166 92 0.182 −0.192 0.209 −0.207
70 0.004 0.003 94 0.147 −0.174 0.165 −0.184
71 0.092 −0.141 0.096 −0.077 96 0.096 −0.134 0.099 −0.137
72 0.007 0.005 98 0.011 −0.019 0.011 −0.018
73 0.153 −0.112 0.160 −0.118 100 0.004 0.004
74 0.137 −0.081 0.134 −0.064 102 0.005 0.006
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Fig. 7. The neutron and proton quadrupole deformation pa-
rameter β2. The upper part (above the dashed line) is for the
prolate deformation and the lower one is for the oblate defor-
mation. The solid and open circles are for neutron and proton
deformations, respectively.

excess of nucleons. The proton and neutron deformation
difference is large for some odd isotopes, for instance,
71,73Zn, and that may be related to the odd-even differ-
ence of nuclear properties.

3.5 Superdeformations in even Zn isotopes

The Nilsson diagram shows that the energy of the orbital
7/2−[303] of 1f7/2 goes up for the large deformation lead-
ing to the orbital intruders at N(Z) > 26 [39]. Most Zn
isotopes satisfy the relation N(Z) > 26. The particle-hole
excitations from the 1f7/2 state below the N,Z = 28 shell
gap to the orbitals (such as 1g9/2) above the gap may give
rise to deformed secondary minima and collective behav-
iors. In ref. [28] we investigated the superdeformation in
odd Zn isotopes. However, we did not find that there exist
ground-state superdeformations in the even Zn isotopes. A
possible explanation is that due to pairing correlations the
even Zn nuclei are led to more compact shapes due to the
nuclear superfluid which is prone to isotropic motions. The
SD minima in even Zn isotopes are reasonably expected
to appear as the rotational energy term that balances out
the potential associated with the large deformation makes
the superdeformation possible.

An explicit way to show the occurrence of the superde-
formation is to do the constraint calculation as we adjust
the pairing gap constant which relates to the strength of
pairing correlations. Since the spin of the bandhead of
60Zn is quite low [23], we perform the calculation for 60Zn
as an example. In fig. 8, the potential energy surface is
given for different pairing gaps in NL-SH. There is an arm-
chaired plateau at β ≈ 0.6 without the reduction of pair-
ing interaction. The SD minimum becomes more stable as
the pairing strength is reduced. A self-consistent iteration
calculation shows that the SD minimum can be iterated
out as long as part (20%) of the pairing correlation contri-
bution is balanced out by the rotational energy. 66Zn is an
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Fig. 9. The same as shown in fig. 8, but for 66Zn.

isotope whose SD band is not observed yet. Figure 9 gives
the results of the constraint calculation for a different pair-
ing constant. There is no plateau at the SD region. Com-
pared to 60Zn, it is much more difficult for 66Zn to reach
the SD states by the equilibrium established between the
rotational energy and the pairing interaction. For other
even Zn isotopes, the constraint calculation also indicates
that the SD minima may appear as the pairing correlation
is partly broken up by the rotational Coliolis force.

The self-consistent calculation shows that the particle
occupation number in levels originated from the orbital
1g9/2 gets a rise and holes appear in 1f7/2 as the pairing
correlation is suppressed by hand in the calculations. The
formation of SD minima is mainly attributed to the char-
acteristic configuration of holes in 1f7/2 and intruder or-

bitals from 1g9/2. The calculation with the TM1 set gives
similar results.

3.6 The role of the π-meson and vector currents

The π-meson and spatial component of the vector me-
son have inherent negative parity. For the spin-saturated
nuclei, the negative-parity mesons have zero expectation
values in the mean-field approximation. In odd nuclei, the
time-reversal symmetry is broken and the source term for
the negative-parity mesons does not vanish in the mean-
field approximation. More particularly, the spatial compo-
nent of the vector meson has the nonzero value only when
the odd or odd-odd nuclei are deformed.

The π-meson, as an isovector scalar meson, plays the
contrary role to that of the ρ-meson, say, it shifts down the
potential depth of the neutron and shifts up that of the
proton. The contribution of the π-meson is small since its
source term is dominantly from the valence nucleon. For
the Zn isotopes from the proton-rich side to the neutron-
rich side the modification to the total binding energy due
to the π-meson is about 0.5–0.3MeV. This small value
may be important for giving the value of the neutron sep-
aration energies near the drip lines. In lighter nuclei like
carbon isotopes, the π-meson contribution to the average
quantities, such as deformation parameters, could be com-
paratively larger [38].

In odd nuclei the spatial component of the ω-meson
that couples to the nonzero vector current, brings about
the breaking of the time-reversal symmetry. Due to the
coupling between the valence neutron and core, the core
is polarized and the ±Ωi degeneracy is broken for both
neutron and proton orbitals in deformed odd and odd-
odd nuclei. The ±Ωi splitting in the Zn isotopic chain
is of magnitude 0.1MeV and it varies with the isospin.
For the proton-rich side, the splittings are up to 0.5MeV
between some splitted states. As the neutron number in-
creases, the splitting tends to fall down. Near the neutron
drip line the splitting is lower than 0.1MeV. The source
of the spatial ω is mainly from the product of the big and
small components of the valence nucleon but with different
spin projections (see the appendix). The valence neutron
begins to have a definite spin projection due to the weak-
ening residue interactions with core nucleons, and hence
the product goes to vanish as the neutron number rises
up to the drip line. This explain why the ±Ωi splittings
go down with the rise of isospin.

In odd nuclei, the pairing correlation is suppressed due
to the blocking effect. Moreover, in deformed odd nuclei,
because the ±Ωi degeneracy is broken, the pairs in energy
are actually broken up. The vector current in deformed
odd nuclei plays the role of anti-pairing. The breaking of
±Ωi degeneracy is eventually prominent for proton-rich
isotopes. This can explain the factor that the prediction
for the odd nuclei of the proton drip line is in good agree-
ment with the experimental data. However, as the vector
current goes to vanish close to the neutron drip line, a
consideration of pairing correlations is needed in further
investigations.
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4 Summaries

We have investigated the ground-state properties of Zn
isotopic chain in deformed RMF theory considering the
contributions of the π-meson and spatial component of
the ω-meson. Binding energies, nuclear sizes, and defor-
mations of whole Zn isotopes have been obtained using
the NL-SH and TM1 forces. The two forces predict consis-
tent results for Zn isotopes within drip lines. Theoretical
results are in good agreement with the experimental data
available.

The shell effects in Zn isotopes are well described in
NL-SH and TM1. At the neutron magic number N = 28
and 50, kinks in the profile of isotope shifts, relevant to the
strong shell effect, have been displayed. An apparent in-
crease of the spatial neutron extension has been observed
as the neutron number increases till above the kink at
N = 50. A similar increase of the spatial proton exten-
sion has also been observed as the neutron number falls
down from the kink at N = 28. The strong shell effect
also appears in deformation as the nuclei at neutron magic
numbers are sphericized in deformed Zn isotopic chain.

Except for a few spherical nuclei, Zn isotopes have
strong deformations. For nuclei of β-stability, the proton
and neutron have similar deformation, while the difference
of neutron and proton deformations turns out apparent
for the regions near drip lines and a few odd nuclei. The
difference of proton and neutron deformations is mainly
attributed to nucleon excesses. We have found that the
Zn isotopic chain is very abundant in shape coexistence of
prolate-oblate type. The dense regions having shape coex-
istence fall on isotopes with a few neutrons off the magic
number.

Though the sharp rise of the orbital 7/2−[303] of 1f7/2
at high deformations may cause the orbital intruders for
N(Z) > 26, there is no ground-state superdeformation
found in even Zn isotopes. The constraint calculation indi-
cates that the SD minimum may appear for some isotopes
even at low spins as long as part of the pairing correlation
contribution is balanced out by the rotational energy.

Besides keeping even Zn isotopes apart from the su-
perdeformation, pairing correlations are also important
for other ground-state properties of even nuclei. The oc-
cupation number of positive-energy states rises quickly as
the isotope passes drip lines. The neutron drip line nu-
clei predicted for odd and even nuclei have large differ-
ence in neutron number. The drip line reaches N = 57
for odd nuclei and N = 72 for even nuclei. This obvious
odd-even difference may serve as the possible signature of
halo formation since the calculation shows that the rela-
tion sn > s2n emerges as N > 57 in even nuclei, and that
needs an experimental test. The odd-even effect becomes
prominent for charge r.m.s. radii on the proton-rich side,
as a portion of proton pairs are boosted to the continuum.

The π-meson role in odd Zn isotopes is small. We may
expect the π-meson would have larger effects in lighter nu-
clei. The spatial component of the ω-meson in odd nuclei
that couples to the nonzero vector current brings about
the breaking of the time-reversal symmetry, leading to
splittings of ±Ω states. In deformed odd Zn nuclei, be-

cause the ±Ω degeneracy is broken, the pairs in energy
are actually broken down. The vector current in deformed
odd nuclei plays the role of anti-pairing. The vector cur-
rent is important in predicting the proton drip line and
odd-even difference of the charge radii.

However, it is a challenge that we use the BCS pairing
to perform calculations passing the drip lines. As close to
the neutron drip line, the vector current goes to vanish,
our work has not treated the pairing interaction for odd
nuclei. This deserves further analysis.
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tion Project No. KJCX2-N11, the National Natural Sciences
Foundation of China under grant Nos. 10405031, 10125521,
10235030 and the Major State Basic Research Development
Program under grant No. G200077400.

Appendix A. Source terms of the π-meson

and spatial components of vector mesons

We will give the sources of the π-meson together with spa-
tial components of vector mesons in the cylindrical frame-
work. For the axially symmetric nuclei, the following cylin-
drical frame is used:

x = r⊥ cosϕ, y = r⊥ sinϕ, z = z . (A.1)

The spinor ψi with index i is characterized by the quan-
tum numbers: the total spin projection, parity and isospin
Ωi, πi, ti, and it is expanded as follows [10]:

ψ(~x)i =
1√
2π









f+
i (z, r⊥)e

i(Ωi−1/2)ϕ

f−i (z, r⊥)e
i(Ωi+1/2)ϕ

ig+
i (z, r⊥)e

i(Ωi−1/2)ϕ

ig−i (z, r⊥)e
i(Ωi+1/2)ϕ









. (A.2)

The source terms for the spatial component of ω and ρ
mesons are, respectively,

jωϕ
=

∑

i1

1

2π
[f+
i1g

−
i1 − f−i1g+

i1] , (A.3)

jbϕ
=

∑

i1,t3

t3
1

2π
[f+
i1g

−
i1 − f−i1g+

i1] . (A.4)

The π-meson source term is explicitly as follows:

ρπ = −
(

∇r⊥ρπ⊥
+
ρπ⊥

r⊥
+ ∂zρπz

)

, (A.5)

where

∇r⊥ρπ⊥
+
ρπ⊥

r⊥
=
∑

i

(

∇r⊥−2
Σ3l3
r⊥

)

(ψ†(r)Σr⊥τ3ψ(r))=

∂r⊥
∑

i,t3

t3
π
[f+
i f

−
i + g+

i g
−
i ]

+
∑

i,t3

t3
πr⊥

[f+
i f

−
i + g+

i g
−
i ] , (A.6)
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∂zρπz
=

∑

i

∂z(ψ
†(r)Σ3τ3ψ(r) =

∂z
∑

i,t3

t3
2π

[

f2+
i − f2−

i + g2+
i − g2−

i

]

. (A.7)

Now we can show on what conditions the π-meson and
the spatial component of vector mesons have nonzero con-
tributions. For even nuclei, there exists the time-reversal
symmetry. So, if there is the Dirac spinor with positive Ωi

ψi ≡ {f+
i , f

−
i , g

+
i , g

−
i ; Ωi} , (A.8)

it has the time-reversed solution with the same energy

Tψi ≡ {−f−i , f+
i , g

−
i , − g+

i ; −Ωi} , (A.9)

where the time-reversal operator is T = iσyK with σy
the Pauli matrix and K the complex conjugation opera-
tor. We can easily find that the π-meson and the spatial
component of vector mesons will vanish for even nuclei
where the spin is saturated (i.e. states with ±Ωi are filled
in pairs) by summing up states with both positive and
negative Ωi’s. The nonzero contribution only emerges for
odd nuclei where there is one state (Ωi) whose spin is not
paired. In spherical odd nuclei, the structure of the spinor
is simplified so that the spinor allows only one indepen-
dent nonzero component (f−, g−) or (f+, g+). This makes
the source term of the spatial component of vector mesons
vanish.
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